高考数学选择题题型(高考选择题题型)


做选择题除了用了知识点之外,还可以用选择题本身的漏洞做题。大家记住一点,所有选择题,题目或者答案必然存在暗示点:

1)有选项。利用选项之间的关系,我们可以判断答案是选或不选。如两个选项意思完全相反,则必有正确答案。

2)答案只有一个。大家都有这个经验,当时不明白什么道理,但是看到答案就能明白,由此选项将产生暗示。

3)题目暗示。选择题的题目必须得说清楚。大家在审题过程中,是必须要用到有效的讯息的,题目本身就给出了暗示。

4)利用干扰选项做题。选择题除了正确答案外,其他的都是干扰选项,除非是乱出的选项,否则都是可以利用选项的干扰性做题。一般出题者不会随意出选项,总是和正确答案有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。

5)选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程。

6)选择题必须考察课本知识,做题过程中,可以判断和课本哪个知识相关?那个选项与这个知识点无关的可立即排除。因此联系课本知识点做题。

8)选择题必须保证考生在有限时间内可以做出来的,因此当大家花很多时间想不对的时候,说明思路错了。选择题必须是由一个简单的思路构成的。

知道了这个前提之后,就来看看一些技巧↓↓↓

1. 排除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

y=x为奇函数,y=sin|x|为偶函数,奇函数+偶函数为非奇非偶函数,四个选项中,只有B选项为非奇非偶函数,凭此一点排除ACD。

2. 特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。值得注意的是,特殊值法常常也与排除法同时使用。

代入特殊值0,显然符合,排除AD;代入x=-1显然不符,排除C。

3. 极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

直接取AB⊥CD的极端情况,取AB中点E,CD中点F,连结EF,令EF⊥AB且EF⊥CD,算出的值即最大值,无须过多说明。

4. 顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。如下题,根据题意,依次将点代入函数及其反函数即可。

5. 逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。常与排除法结合使用。

代入x=0,显然符合,排除AD;代入x=-1显然不符,排除C。选B。

6. 正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论,在做排列组合或者概率类的题目时,经常使用。

7. 数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

作图后直接得出选项A符合

8. 递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法,例如分析周期数列等相关问题时,就常用递推归纳法。

9. 特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

如果不去分析该几何体的特征,直接用一般的割补方法去做,会比较头疼。细细分析,其实该几何体是边长为2的正方形体积的一半,如此这般,不用算都知道选C。

10. 估算法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

这种没办法解的方程,只能通过估算求解。当然,在可以使用计算器的情况下,估算也可以也精确,使用TABLE或者SOLVE功能,可计算约等于0.42

但是!

平时做题时不要过分依赖于技巧!

如果,你在“猜”选择题时经常出现要么都感觉对、要么有两个实在难以抉择的情况,这只能说你需要的不是答题技巧,而是你的基础不扎实,对所学知识掌握不全面,这是大忌!此时就应该去补补基础知识了~


免责声明
    以上文章转载自互联网,文章内容仅供参考,不构成建议,也不代表百科学社赞同其观点。如有侵权请联系755934052@qq.com,提供原文链接地址以及资料原创证明,本站将会立即删除

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请通知我们,一经查实,本站将立刻删除。